
Evolution of a Parallel Task Combinator

Bas Lijnse

Radboud University Nijmegen
b.lijnse@cs.ru.nl

Abstract. The development of experimental software is rarely straight-
forward. If you start making something you don’t understand yet, it
is very unlikely you get it right at the first try. The iTask system has
followed this predictably unpredictable path. In this system, where com-
binator functions are used to construct interactive workflow support sys-
tems, the core set of combinator functions has changed along with pro-
gressed understanding of the domain. Continuous work on this system
led to the emergence of a new programming paradigm for interactive
systems: Task-Oriented Programming (TOP). In this paper we recon-
struct the evolution of one of the core iTasks combinators to catch a
glimpse of this emergence. The combinator is the parallel combinator
that facilitates the composition of multiple concurrent tasks into a single
one. We reconstruct its evolution from the written record in the form of
published papers and discuss this reconstruction and what it tells about
the progressed understanding of programming with tasks.

1 Introduction

If you don’t know where you are going, you don’t know where you will end up.
Making research software based on ideas that you don’t yet fully understand is
inherently different from “production” software where you assume that you can
clearly scope the requirements, and you can draw up designs based on understood
principles. Although you cannot reliably work towards a defined product, it does
not mean that you are just randomly doing something. By trying to embody little
understood ideas in a software system, and trying to make things of which you
don’t know if they are even possible you learn what is possible and you get a
better understanding of your initial ideas. You have, of course, ideas about what
you consider important and expectations of what you might find, but you have
to try to keep an open mind and be prepared to change course midway. In the
process you may find that your hypotheses about properties of your system don’t
hold or you end up with something different than you imagined.

The iTask System (iTasks) is a system that followed this uncertain path and
has been changing ever since it was first conceived [9]. This system started out as
a modest experiment to express workflow in the functional language Clean [16],
but that was just the beginning. In the past years it evolved and eventually be-
came a general-purpose framework for making interactive web-based multi-user
applications, supporting a new programming paradigm: Task-Oriented Program-
ming (TOP). In this paradigm, multi user systems are expressed by composing

tasks. The evolution of iTasks was driven primarily by two desires. The first
driver was the quest to find a minimal, yet complete, core set of primitives to
express task patterns with. The second driver was the wish to not be limited
to work with little variation, modeled by rigid workflows, but be able to cap-
ture a wide range of dynamic real-world tasks. These desires pushed the scope
of the iTask system beyond what is usually considered workflow, and into a
general purpose framework for any interactive system. At some point we real-
ized that programming applications with iTasks had drifted so far away from
workflow specification and traditional functional programming, that it could be
considered a separate new paradigm. The present day iTask system provides
a combinator based embedded domain specific language that implements the
basic TOP constructs for defining and composing tasks. It consists of generic
user interaction primitives, combinators for sequential and parallel composition
of tasks and primitives for sharing data between tasks.

Some iTask combinators have remained relatively stable, such as the monadic
“bind” for sequential compositions. Others however, changed more often. One
of the combinators that changed a lot was the parallel core combinator for
concurrent execution of multiple tasks. This combinator originally was not even
a single combinator but a set of specialized combinators that were more or less
related to each other. At some point it seemed that there was a new version
of this combinator in every published paper. When students who used iTasks
for their research projects asked for a paper they could read as introduction,
we almost always had to answer that there was of course something they could
read, but that the latest version was already different from that paper.

Now that we have arrived at the TOP paradigm, it is interesting to look back
and see how we got here. We usually focus on the future, and aim to improve
the status quo, but sometimes looking back can provide valuable insights too. A
festschrift such as this provides a good opportunity to do so. In this paper we
reconstruct the evolution of the parallel combinator as angle on the emergence
of TOP. Because we cannot rely on memory, we turn to the accumulated pub-
lications about iTasks as written record of the evolution of the system, and to
keep the scope manageable, we focus on the “parallel” combinator in particular.
In the remainder of this paper, we see how we can reconstruct the history of
the parallel combinator (Section 2), walk through its evolution (Section 3), and
reflect on it (Section 4).

2 Methodology

To reconstruct the evolution of the parallel combinator, we have two sources at
our disposal. There is a written record of milestone versions in the form of publi-
cations that contain an explanation of the iTask system. The advantage of these
publications is that they do provide an explanation along with the definitions.
The disadvantage of publications is that it is hard to reconstruct the time frame
in which the published definition was used due to the delays of the publication
process. Fortunately, since the majority of the publications were published in

conference proceedings, the submission deadlines of those conferences are men-
tioned in their calls for papers. These calls are easily retrievable through public
archives of mailing lists to which they were posted. The submission deadlines
provide a reasonable estimation of the date the paper was finalized.

The second source we can use is the logging provided by the public Sub-
version (version control) repository of the iTask system. This record is more
fine grained than the publication record, because not all small changes are im-
mediately worthy of publication. Finding out when changes were made is very
easy for this source, because all commits to the repository are automatically
timestamped. The disadvantage of this source is that changes are often only ac-
companied by short log messages, such that we need to study the source code of
the system at critical points in time to understand the interface and semantics
of the combinator in that time frame.

In this paper we limit ourselves to the publication record because these are
milestone versions and we aim to reconstruct the complete history. The Sub-
version log is simply too fine grained for such a global overview. To make our
reconstruction we simply collect all publications about the iTask System that
mention the parallel combinator or its specialized predecessors. We then orga-
nize them chronologically and isolate those sections of the papers that explain
parallel composition.

3 Evolution of the Parallel Combinator

In this section we present the history of the parallel as reconstructed from pub-
licly available sources. Other than grouping the chronology in related periods, we
do not yet interpret anything. We only collect and organize what is said about
the combinators and postpone discussion to the next section.

3.1 The ‘AND’ and ‘OR’ Period

The parallel combinator did not start out as a single construct for all possible
parallel patterns of combining tasks. It started out as a set of combinators for
specific patterns. The first iTasks paper, “iTasks: Executable Specifications of
Interactive Work Flow Systems for the Web” [9] presented at ICFP 2007 (Oc-
tober 1-3, 2007), defined two combinators for parallel composition. They are
explained as follows:

The infix operator (t1 -&&- t2) activates subtasks t1 and t2 and ends
when both subtasks are completed; the infix operator (t1 -||- t2) also
activates two subtasks t1 and t2 but ends as soon as one of them termi-
nates, but it is biased to the first task at the same time. In both cases,
the user can work on each subtask in any desired order. A subtask, like
any other task, can consist of any composition of iTasks.

The paper also shows the implementations of these combinators. In this code we
can already see that both combinators are very similar.

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iCreate a & iCreate b

(-&&-) taska taskb = doTask and

where and tst=:{tasknr}
(a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

(b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst

= ((a,b) ,set_activated (adone && bdone) tst

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iCreate a

(-||-) taska taskb = doTask or

where or tst=:{tasknr}
(a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

(b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst

= (if adone a (if bdone b createDefault)
, set_activated (adone || bdone) tst

)
mkParSubTask :: Int TaskID (Task a) → Task a

mkParSubTask i tasknr task = task o newSubTaskNr o set_activated True o subTaskNr i

In the lecture notes of the CEFP 2007 summer school [8], which included a
course on iTasks, we find the exact same code and accompanying explanations
as in the ICFP 2007 paper. This summer school was held the same summer, so
this is not surprising.

The next publication that mentions the parallel iTask combinator is “Declar-
ative Ajax and Client Side Evaluation of Workflows using iTasks” presented at
PPDP 2008 (July 15,17 2008) [13]. This paper gives type definitions for the same
two parallel combinators:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iData a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iData a & iData b

The only difference between these signatures and the previous ones is the con-
text of iData instead of iCreate. The difference between these restrictions is that
the iData class also contains generic storage and visualization in addition to de-
fault value creation provided by iCreate. The paper provides explanations of the
combinators by examples that reveal that the semantics of the combinators did
not change:

The expression t-||-u offers tasks t and u simultaneously. As soon as
either one is finished first, t-||-u is also finished. Any work in the other
task is discarded. The -||- combinator is very useful to express work
that can be aborted by other workers or external circumstances. In

ot = yt -||- nt -||- et

the iTasks system offers the task yt, nt, and et simultaneously. Any edit
work in et is discarded when the user presses one of the buttons labeled
Yes or No.

And for the -&&- combinator:

If one really needs both results of tasks t and u, then this is expressed by
t -&&- u, which runs both tasks to completion and returns both results.
For instance, if we need a string and an integer (with default value 5)
we can use the task:

at :: Task (String, Int)
at = ot -&&- editTask "Done" 5

The next mention of the parallel combinators is in the lecture notes of the
AFP 2008 summer school [10] (May 19-24, 2008). In this publication, the iTask
system is explained following a case study. The combinators are initially only
explained in so far they are relevant to that case. Therefore initially only the
“OR” combinator is defined:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iData a

And explained only briefly as:

The left-biased task t -||- u is finished as soon as either t or u has fin-
ished, or both.

In a later section that explains the semantics of the iTask system using a sim-
plified model, the ‘AND’ combinator is introduced together with its equivalent
in the model:

We introduce the iTask combinator t -&&- u, and represent it by t .&&. u.
In the case study in Section 2 we did not use this combinator, but it
belongs to the basic repertoire of the iTask system, therefore we in-
clude it here. In the task t -&&- u, both subtasks t and u are available
to the user. The composite task is finished as soon as both subtasks
are finished. Hence, it differs from -||- in which termination is con-
trolled by the first subtask that finishes. Also, its type is more gen-
eral, because the types of the return values of the subtasks are al-
lowed to be different, the type of this operator in the iTask system is
(Task a) (Task b) → Task (a,b) | iData a & iData b.

The full semantic model is too lengthy to quote here, but the reduction of the
modeled combinators .||. and .&&. that represent the ‘OR’ and ‘AND’ combi-
nators is defined to exhibit the behaviour that has been explained in the various
papers so far.

This semantic model is worked out in full in the next publication that men-
tions the parallel combinators. In “An Executable and Testable Semantics for
iTasks” [5] presented at IFL 2008 (September 10-12) we find the now familiar
type signatures and the following explanation.

The expression t -||- u indicates that both iTasks can be executed in
any order and interleaved, the combined task is completed as soon as
any subtask is done. The result is the result of the task that completes
first, the other task is removed from the system. The expression t -&&- u

states that both iTasks must be done in any order (interleaved), the
combined task is completed when both tasks are done. The result is a
tuple containing the results of both tasks.

The most notable thing here is that the interleaving semantics of the combinators
is mentioned explicitly for the first time.

3.2 Lists of Parallel Tasks

In the next publication, “Web Based Dynamic Workflow Systems and Appli-
cations in the Military Domain” [2], in the 2008 issue of NL ARMS, we see
additional parallel combinators for the first time. The ‘OR’ and ‘AND’ combi-
nators are generalized to versions that use lists of tasks that are executed in
parallel. The combinators are explained by example:

The AND (-&&-) operator generates two tasks that both have to be fin-
ished before the results can be used.

simpleAndMU :: Task Int

simpleAndMU

= (0 @:: editTask "Number entered" 0)
-&&- (1 @:: editTask "Number entered" 0)
=>>λ(v,w) → 2 @:: editTask "Sum" (v+w)

For AND also a multi-version ‘andTasks’ exists, which handles a list of
tasks. The task completes when all subtasks are completed.
The OR (-||-) operator generates two tasks in parallel. As soon as one of
them finishes the result of that task is available. The result of the other
task is ignored.

simpleOrMU :: Task Int

simpleOrMU

= (0 @:: editTask "A number" 0)
-||- (1 @:: editTask "A number" 0)
=>>λv → 2 @:: editTask "First number" v

Also for OR a multi-version ‘orTasks’ exists, which handles a list of tasks.
The task completes as soon as one of the tasks completes.

Additionally, an important new concept is reported for the first time: a general
parallel combinator with which other combinators can be expressed:

In iTasks a special version of ‘andTasks’ exists: ‘andTasksCond’. A number
of tasks can be started in parallel. Each time one of the tasks is finished
a condition is applied to all completed tasks. If the condition is met,
‘andTasksCond’ is finished and the completed results are returned in a list.

This combinator is also explained by example:

simpleAndTaskCond :: Task Int

simpleAndTaskCond

= andTasksCond pred [("User"+++toString u,
u @:: editTask "Number entered" 0) \\ u← [1..4]]

=>>λxs → [Txt "Their sum is"] !>> return_D (sum xs)
where pred xs = sum xs > 3

Here a parallel task for 4 users is started. They all have to enter a number.
Here the condition checks if the sum of the already entered numbers is
greater than 3. As soon as this is the case this task stops and the results
are passed to another task where they are displayed.

What is more, the paper shows how this ‘andTasksCond’ can be used to express
other combinators:

This is a very powerful combinator because many other combinators
can be expressed using it. For example the definitions of ‘andTasks’ and
‘orTasks’ can be given by:

andTasks xs = andTasksCond (λys = length ys==length xs) xs

orTasks xs = andTasksCond (λys = length ys==1) xs

The next publication that mentions the parallel combinators is “Tasks 2:
iTasks for End-users” [6] presented at IFL 2009 (September 23-25, 2009). Al-
though it reports on a new implementation of the iTask system, the combinator
language has not changed as can be seen in the signatures that are mentioned
without further explanation.

// Execute two tasks in parallel
(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b)
// Execute two tasks in parallel, finish as soon as one yields a result
(-||-) infixr 3 :: (Task a) (Task a) → Task a

// Execute all tasks in parallel
allTasks :: ([Task a] → Task [a])
// Execute all tasks in parallel, finish as soon as one yields a result
anyTask :: ([Task a] → Task a)

The new combinators introduced here, ‘allTasks’ and ‘anyTask’ appear to be just
variations of the ‘andTasks’ and ‘orTasks’ combinators in the NL ARMS paper.

This apparent variation is confirmed in the next publication, “Embedding a
Web-Based Workflow Management System in a Functional Language” [4] pre-
sented at LDTA 2010 (March 27-28, 2010). The signatures with an explanation
of these combinators are given.

// Splitting-joining any number of arbitrary tasks:
anyTask :: [Task a] → Task a | iTask a

allTasks :: [Task a] → Task [a] | iTask a

Any number of tasks ts = [t1...tn](n >= 0) can be performed in par-
allel and synchronized (also known as splitting and joining of workflow
expressions): anyTasks ts and allTasks ts both perform all tasks ts simul-
taneously, but anyTasks terminates as soon as one task of ts terminates
and yields its value, whereas allTasks waits for completion of all tasks
and returns their values.

In this paper the fully generalized parallel combinator is presented for the first
time. Unlike the ‘andTasksCond combinator, which could not express ‘anyTask’ for
example because its type is always Task [a], this combinator is capable of ex-
pressing all parallel patterns.

As a final example, iTask provides a core combinator function, parallel
that is used in the system to define many other split-join combinators
such as anyTask and allTasks that were shown earlier. Its type signature
is:

parallel :: ([a] → Bool) ([a] → b) ([a] → b) [Task a] → Task b

|iTask a & iTask b

parallel c f g ts performs all tasks within ts simultaneously and collects
their results. However, as soon as the predicate c holds for any current
collection of results, then the evaluation of parallel is terminated, and
the result is determined by applying f to the current list of results. If
this never occurs, but all tasks within ts have terminated, then parallel

terminates also, and its result is determined by applying g to the list of
results.

The paper after this one reinforces the idea of a single general parallel combi-
nator to express multiple patterns without going into details. This paper, “Web
Based Dynamic Workflow Systems for C2 of Military Operations” [3], presented
at ICCRTS 2010 (June 22-24, 2010) stresses the use of a single general concept
and gives ‘anyTask’ and ‘allTasks’ as examples.

An important combinator for executing a number of tasks in parallel
is the parallel combinator. Where other workflow formalisms contain
a large number of patterns for executing tasks in parallel, iTask needs
only one combinator for this. Using the power of the functional host
language, one can construct all other patterns (and more) using this
single combinator. This is hard to do in other workflow languages because
these lack the right abstraction mechanism for realizing this. With the
parallel combinator one can start the execution of several tasks in parallel
and stop this execution as soon as a user specified condition is fulfilled.
For example, one can stop when one task (or-parallelism) is finished:

anyTask [task_1,task_2,task_3,task_n]

When all tasks (and-parallelism) are finished:

allTasks [task_1,task_2,task_3,task_n]

Or when the results of the finished tasks satisfy a certain condition (ad-
hoc parallelism):

conditionTasks condition [task_1,task_2,task_3,task_n]

These different combinators are all shorthands for the same generic
parallel combinator instantiated with different parameters.

The next paper, “iTask as a New Paradigm for Building GUI Applications”
[7] presented at IFL2010 (September 1-3, 2010), is concerned mostly with the
additional concepts needed to make GUI programs with iTasks. It explains the
iTasks combinators only to the extent necessary for the leading example of the
paper. Regarding parallel combinators this is just the familiar ‘AND’ combinator.

Finally, we need a combinator to compose tasks in parallel: -&&- performs
both tasks and returns their combined result when both are terminated.

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iTask a & iTask b

Similarly, the next paper also explains the combinators only to the extent
necessary for the purpose of the paper. This paper, “iTasks for a Change: Type-
Safe Run-Time Change in Dynamically Evolving Workflows” [11] presented at
PEPM2011 (January 24-25, 2011), ignores that the ‘AND’ and ‘OR’ combinators
are expressed using a general ‘parallel’ combinator. It defines their semantics
directly such that their behaviour during run-time change can be explained.

(-||-) infixr 3 :: (Task a) (Task a) → Taska | iTaska

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b) | iTask a & iTask b

To compose tasks in parallel, the combinators -||- and -&&- are provided.
A task constructed using -||- is finished as soon as either one of its
subtasks is finished, returning the result of that task. The combinator
-&&- is finished as soon as both subtasks are finished, and pairs their
results.

The semantics of these combinators is defined in a separate semantic domain.
The paper gives definitions for -||- as well as -&&-, but we will limit ourselves to
the definition of -||-.

The semantic function of -||- is defined as follows:

(-||-) infixr 3 :: (STaska) (STaska) → STaska

(-||-) ta ua =λ i p e s →
case ta (subIds i !! 0) p e s of
(NF va, s) → (NF va, s)
(Redex nta, s) →
case ua (subIds i !! 1) p e s of
(NFwa, s) → (NFwa, s)
(Redex nua, s) → (Redex (nta -||- nua) , s)

From the formal definition of the behaviour of the ‘AND’ and ‘OR’ combinators
in this paper we can see that the semantics of these combinators have not changed
since the original definitions three and a half year earlier.

3.3 Towards Dynamically Extensible Parallel Tasks

The next paper covers the overall design of the iTask system again. This paper,
“Getting a Grip on Tasks that Coordinate Tasks” [14] was an invited paper at
the LDTA 2011 Workshop (March 26-27, 2011). It both explains the status quo
of the iTask system and discusses future needs. This paper starts by giving the
familiar definitions for the basic ‘AND’ and ‘OR’ combinators. When discussing
the expressiveness of the combinator language, the general parallel combinator
is explained and definitions for ‘AND’ and ‘OR’ are given.

The need for more functionality does not necessarily imply that more
combinators are required. By using higher order functions, Swiss-Army-
Knife combinators can be defined, that strongly reduce the number of
needed core combinators. In the current iTask system, the parallel com-
binator is one such example:

parallel :: ([a] → Bool) ([a]→b) ([a]→b) [Task a] → Task b

| iTask a & iTask b

For instance, the core combinators -||- and -&&- can be replaced by
suitable parametrization of parallel. The function parallel predOK someDone

allDone taskList takes a list of tasks (taskList) to be executed in parallel,
a predicate (predOK), and two conversion functions (someDone and allDone).
Whenever a member of taskList is finished, its result is collected in a list
results of type [a], maintaining the order of tasks. Now predOK results

is computed to determine whether parallel should complete, in which
case the result is computed by someDone results. When all parallel tasks
have run to completion, and predOK is still not satisfied, then parallel also
completes, but now with result allDone results. We can define -||- and
-&&- as follows:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

(-||-) ta1 ta2 = parallel (not o isEmpty) first undef [ta1, ta2]
where
first [a] = a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b) | iTask a & iTask b

(-&&-) ta tb = parallel (const False) undef all

[ta >>= Left, tb >>= Right]
where
all [Left a,Right b] = (a,b)

Although a Swiss-Army-Knife combinator such as parallel can be used
to define many different kinds of parallel behaviours, there is room for
improvement here as well. With predOK one can freely define when the
parallel tasks can be stopped, but perhaps one also needs to be able to
start new tasks dynamically, because more work is required.

So far the paper provides little new information. However in the section that
addresses future needs, it is revealed that big changes to the parallel combinator
are afoot.

The workflow engineer should be able to specify the means of control
as (arbitrarily many) additional tasks that coordinate these tasks. We
hypothesize that these forms of parallel behaviour can be captured with
a single, more general combinator. The combinator needs to meet the
following criteria:
1. The number of tasks in the current parallel combinator remains con-

stant, and parallel can only enforce early termination, not the exten-
sion of new tasks. The number of tasks in a parallel setting should
not be fixed once and for all, but should adapt to the needs of the
current situation.

2. The tasks within the current parallel combinator simply perform
their duty and as such do not interfere with each other (except of
course when using shared communication). Next to these regular
tasks we introduce control tasks. These are also tasks, but, being
control tasks, they edit the collection of parallel tasks. In this way, we
can replace the predefined behaviour of task delegation and instead
leave it to the workflow engineer whether or not to use a predefined
control delegation-task or introduce a (number of) custom control
task(s).

3. Because the number of both regular and control tasks varies during
the evaluation of a parallel group, we need to share information about
the state of the parallel group. Access to this state is restricted to
control tasks only, which is easily achieved using the strong type
system.

4. In the current parallel combinator, control is limited to either early
completion (computed by predOK) in which case the final task result
was computed by someDone or full completion in which case the final
result was computed by allDone. In the more general case, we need
to decide how to continue whenever a regular or control task runs
to completion. Again, this should not be computed by the regular
tasks. Instead, we need a function that knows which task has com-
pleted, and hence has a result value that needs to be accumulated in
the shared state. In addition, this function can decide what should
happen with the group of parallel (control and regular) tasks: tasks
can be suspended and resumed, they can be removed, replaced, and
new (control and regular) tasks can be added to the group of par-
allel tasks. It is clear that this functionality subsumes the current
behaviour of parallel, and adds behaviour that was inexpressible be-
fore.

5. The final part that should be abstracted from is the arrangement,
or layout, of the generated GUIs of the (control and regular) tasks.
In the current iTask system a distinction is made between a parallel
form for tasks that can, in principle, each be delegated to other
workers and a parallel form for tasks which GUI should be merged
into one single presentation. In order to abstract from this, it is
better to parameterize the new parallel combinator with a function

that describes how the component GUIs of (control and regular)
tasks should merged.

We are currently experimenting with a single parallel combinator that
meets the above criteria. With this combinator we hope to express all
other task combinators as special cases.

These five points illustrate that all aspects of parallel combination are con-
sidered. Even the visual representation (layout) of parallel combinations, which
we have not encountered in the publications so far, is taken into account.

In the next publication, “Defining Multi-user Web Applications with iTasks”
[12] in the lecture notes of the CEFP 2011 summer school (June 14-24, 2011),
we can see that the proposed changes to the parallel combinator have found
their way into the system. In this paper two sections (8 & 9) are devoted to
the parallel combinator. The first of those presents a far more complex parallel

combinator:

The iTask system provides a single, swiss army knife combinator for
this purpose, called parallel. In this section we explain how to use this
versatile combinator for an arbitrary, yet constant, number of users. In
Section 9 we continue our discussion and show how it can be used to
accommodate a dynamic number of users. The signature of parallel is:

parallel :: d s (ResultFun s a) [TaskContainer s] → Task a

| iTask s & iTask a

& descr d

We briefly discuss its parameters first. The first parameter is the usual
description argument that we have encountered many times so far. It
plays the same role here: a description to the user to inform her about
the purpose of this particular parallel task in the workflow. The second
argument is the initial value of the state of the parallel task: the state is
a shared data that can be inspected and altered only by the tasks that
belong to this parallel task. The third argument is a function of type:

:: ResultFun s a :==TerminationStatus s → a

:: TerminationStatus = AllRunToCompletion | Stopped

The purpose of the ResultFun function is to turn the value of the state of
the parallel task at termination into the final value of the parallel task
itself. They need not have the same type, so the state is converted to the
final value when the parallel task is finished. The parallel combinator can
terminate in two different ways. It can be the case that all subtasks are
finished (AllRunToCompletion). But, as we will see later, a subtask can also
explicitly kill the whole parallel construction (Stopped). This information
can be used to create a proper final value of parallel. Finally, the fourth
argument is the initial list of task (container)s that constitute the parallel
task. A task container consists of two parts: a task type representation
(ParallelTaskType) defining how the subtask relates to its super-task, and
the subtask itself (defined on shared state s) to be run in parallel with
the others (ParallelTask s):

:: TaskContainer s :== (ParallelTaskType, ParallelTask s)
:: ParallelTaskType = Embedded

| Detached ManagementMeta

The ParallelTaskType is either one of the following:

– Embedded basically ‘inlines’ the task in the current task.
– Detached meta displays the task computed by the function as a dis-

tinct new task for the user identified in the worker field of meta.
ManagementMeta is a straightforward record type that enumerates the
required information:

:: ManagementMeta =
{ worker :: Maybe User

, role :: Maybe Role

, startAt :: Maybe DateTime

, completeBefore :: Maybe DateTime

, notifyAt :: Maybe DateTime

, priority :: Maybe TaskPriority

}
:: TaskPriority = HighPriority | NormalPriority | LowPriority

It should be noted that the u @: combinator is simply expressed as a
parallel combination of two tasks. One of type Detached with the worker
set, and another of type Embedded that displays progress information.

:: ParallelTask s :== (TaskList s) → Task ParallelControl

:: TaskList s

:: ParallelControl = Stop | Continue

The task creation function takes as argument an abstract type, TaskList s,
where s is the type of the data the subtasks share. Every subtask has to
yield a task of type ParallelControl to tell the system, when the subtask
is finished, whether the parallel task as a whole is also finished (by yield-
ing Stop) or not (by yielding Continue.) As will be explained in Section
9, the number of subtasks in the task list can change dynamically. One
can enquire its status, using the following functions on the abstract type
TaskList s:

taskListState :: (TaskList s) → Shared s | TC s

taskListProperties :: (TaskList s) → Shared [ParallelTaskInfo]

With the function taskListState one can retrieve the data shared between
the tasks of the parallel combinator. As discussed in Section 5, you can
use get, set, and update to access its value. There is another function,
taskListProperties, which can be used to retrieve detailed information
about the current status of the parallel tasks created. This can be used
to control the tasks, and is explained in more detail in the next section.

The second section devoted to the parallel combinator in this paper covers dy-
namically adding and removing tasks from a parallel set:

In this section it is shown how the taskList can be used to dynamically al-
ter the number of subtasks running in parallel. The following operations
are offered to the programmer.

appendTask :: (TaskContainer s) (TaskList s) → Task Int | TC s

removeTask :: Int (TaskList s) → Task Void → TC s

Tasks can be appended to the list of tasks running under this parallel
construction using appendTask. In a similar way, removeTask terminates the
indicated task from the list of tasks, even if it has not run to completion.

The publication after this large change concerns itself with the more friendly
derived parallel combinators only. In this paper, “GiN: A Graphical Language
and Tool for Defining iTask Workflows” [1] presented at TFP 2011 (May 16-18,
2011), only the following familiar signatures and explanation are presented:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iTask a & iTask b

anyTask :: [Task a] → Task a | iTask a

allTasks :: [Task a] → Task [a] | iTask a

Tasks can be composed in parallel. Either the result of the first com-
pleted task is returned (-||- and anyTask combinators) or the results of
all parallel tasks are collected and returned as a whole (-&&- and allTasks)

In the final and most recent publication that covers the parallel combinator
we see a new definition again. In this publication, “Task-Oriented Programming
in a Pure Functional Language” [15] presented at PPDP2012 (May 31, 2012),
the parallel combinator is presented as follows:

Tasks can often be divided into parallel sub tasks if there is no specific
predetermined order in which the sub tasks have to be done. It might
not even be required that all sub tasks contribute sensibly to a stable
result. All variants of parallel composition can be handled by a single
parallel combinator:

parallel:: d → [(ParallelTaskType,ParallelTask a)]
→ Task [(TimeStamp, Value a)] | descr d & iTask a

:: ParallelTaskType = Embedded | Detached ManagementMeta

:: ManagementMeta = { worker :: Maybe User

, role :: Maybe Role

, ...

}
:: ParallelTask a:==SharedTaskLista → Taska

:: SharedTaskList a:== ROShared (TaskList a)
:: TaskList a = { state :: [Value a]

, ...

}

We distinguish two sorts of parallel sub-tasks: Detached tasks get dis-
tributed to different users and Embedded tasks are executed by the current
user. The client may present these tasks in different ways. Detached tasks
need a window of their own while embedded tasks may by visualized in
an existing window. With the ManagementMeta structure properties can be
set such as which worker must perform the sub-task, or which role he
should have. Whatever its sort, every parallel sub-task can inspect each
others progress. Of each parallel sub-tasks its current task value and some
other system information is collected in a shared task list. The parallel
sub-tasks have read-only access to this task list. The parallel combinator
also delivers all task values in a list of type [(TimeStamp,Value a)]. Hence,
the progress of every parallel sub-task can also be monitored constantly
from the “outside”.

The paper does not go into details of adding and removing tasks but mentions
that it is still possible.

For completeness, we remark that the shared task list is also used to
allow dynamic creation and deletion of parallel sub-tasks. We do not
discuss this further in this paper.

3.4 Summary

Because the chronology given in this section may be too much to take in at once,
Table 1 summarizes the results presented in this section. It dates the publications
which are identified by the conference or journal acronym, it indicates which
parallel combinators are covered in that paper, and some of the properties the
parallel combinator(s) had according to that paper. These properties are: The
use of parameters to make derived combinators easier, whether the parallel has
a variable number of tasks, and if there is data sharing between branches in a
parallel combination.

4 Reflections

Now that we have reconstructed the history of the parallel combinator, we can
discuss the developments it went through in the five years worth of publications
in which it is mentioned.

4.1 Towards a Unified Parallel

The parallel combinator in the last publication we examined [15] is something
completely different than the simple orginal ‘AND’ and ‘OR’ [9]. Yet as we
read through the history, the changes are mostly gradual. The semantics of the
‘AND’ and ‘OR’ remain unchanged for a long time, but with the introduction
of the andTasksCond combinator [2] and later the parallel combinator [4], a single
unified combinator emerges that aims to capture all parallel constructs. Once
this unified combinator is established it is clear that there can be a single core
combinator for all possible task combinations.

Paper Date (Deadline date) A
N

D
,O

R
A

N
Y

,A
L
L

pa
ra

lle
l

P
ar

am
et

er
s

V
ar

#
ta

sk
s

D
at

a
sh

ar
in

g

The ‘AND’ and ‘OR’ Period

ICFP2007 [9] October 1-3, 2007 (April 6, 2007) X - - - - -
CEFP2007 [8] June 23-30, 2007 X - - - - -
PPDP2008 [13] July 15-17, 2008 (April 10, 2008) X - - - - -
AFP2008 [10] May 19-24, 2008 X - - - - -
IFL2008 [5] September 10-12 2008 (November 14, 2008) X - - - - -

Lists of Parallel Tasks

NLARMS2008 [2] September 2008 X X - X - -
IFL2009 [6] September 23-25, 2009 (November 1, 2009) X X - X - -
LDTA2010 [4] March 27-28, 2010 (December 4, 2009) - X X X - -
ICCRTS2010 [3] June 22-24 2010 (April 21, 2010) - X X X - -
IFL2010 [7] September 1-3, 2010 (October 25, 2010) X - - - - -
PEPM2011 [11] January 24-25, 2011 (October 22, 2010) X - - - - -

Towards Dynamic Extensible Parallel Tasks

LDTA2011 [14] March 26-27, 2011 (December 22, 2010) X - X X - -
CEFP2011 [12] June 14-24, 2011 - - X X X X
TFP2011 [1] May 16-18, 2011 (June 24, 2011) X X - - - -
PPDP2012 [15] September 19-21, 2012 (May 31, 2012) - - X - X X

Table 1. Parallel definitions in publications

4.2 Safe Experiments

The convergence of the parallel combinators to a single core combinator that
can be used to express specific parallel patterns, does not mean we no longer
see the ‘AND’ and ‘OR’ combinators. An interesting observation is that the
publications can be divided in two categories. Papers that report on overall
progress of the system ([9, 8, 10, 2, 6, 4, 3, 14, 12, 15]), and papers that focus on a
single experimental extension or a specific issue ([13, 5, 7, 11, 1]). In the second
category of papers we often see the ‘AND’ and ‘OR’ combinators still being used.
These easier to explain combinators are used to provide context of the iTask
system, in favor of the more accurate but more complex generalized combinator.

4.3 The Paradigm Shift

After the introduction of the single parallel we can see a new tension building fu-
eled by the drive to capture real-world dynamic tasks. The original iTask system
was based on tasks that always completed. Only when a task was completed its
result was available for further computation of the workflow. For parallel sets of
tasks, this meant that they always had to terminate as full set in order to deliver
a result. In [14] we see the first signs of dissatisfaction with this model when the
need for more dynamic parallel sets is discussed. Tasks in a parallel composition

should be able to be monitored, and if necessary extended if additional work is
needed. In [12] we see the first attempt to realize these goals, but the notion of
terminating tasks is still maintained. This leads to a powerful, yet complicated
swiss-army-knife combinator that can express more parallel constructs, but is
quite difficult to use. Only when in [12] the TOP paradigm had fully emerged,
the parallel combinator was simplified again. By then it was clear that treating
tasks as units of work that have to be completed before you can use their results,
was making compositions more difficult than necessary. Defining tasks as units of
work that continuously produce (temporary) results that can be observed made
it possible to fully reduce the parallel combinator to its essence: just executing
a set of tasks in parallel.

4.4 The Future?

By following the path of the parallel combinator we have seen the emergence
of the TOP paradigm as an incremental interaction between the ideas about
programming with tasks, and their concrete embodyment in the implementation
of the iTask system. A process that eventually led to a new definition of the
notion of tasks to provide the basis for a new way of programming interactive
systems. With a major change in the parallel definition in the last publication
we examined, it is too soon to tell whether this is the final one. For now at least
it looks like the pieces of the puzzle have fallen into place and we have found a
simple, yet powerful unified parallel construct.

References

1. J. Henrix, R. Plasmeijer, and P. Achten. GiN: a graphical language and tool for
defining iTask workflows. In R. Peña, editor, Proceedings of the 12th Symposium
on Trends in Functional Programming, TFP ’11, Selected Papers, volume 7193 of
LNCS, Madrid, Spain, 2012. Springer.

2. J. Jansen, P. Koopman, and R. Plasmeijer. Web based dynamic workflow systems
and applications in the military domain. In T. Hupkens and H. Monsuur, edi-
tors, Netherlands Annual Review of Military Studies - Sensors, Weapons, C4I and
Operations Research, pages 43–59, 2008.

3. J. Jansen, B. Lijnse, R. Plasmeijer, and T. Grant. Web based dynamic workflow
systems for C2 of military operations. In Revised Selected Papers of the 15th In-
ternational Command and Control Research and Technology Symposium, ICCRTS
’10, Santa Monica, CA, USA, June 2010.

4. J. Jansen, R. Plasmeijer, P. Koopman, and P. Achten. Embedding a web-based
workflow management system in a functional language. In C. Brabrand and
P. Moreau, editors, Proceedings 10th Workshop on Language Descriptions, Tools
and Applications, LDTA ’10, pages 79–93, Paphos, Cyprus, March 27-28 2010.

5. P. Koopman, R. Plasmeijer, and P. Achten. An executable and testable semantics
for iTasks. In S.-B. Scholz, editor, Proceedings of the International Symposium on
the Implementation and Application of Functional Languages, IFL ’08, Hertford-
shire, UK, pages 53–64. University of Hertfordshire, 2008.

6. B. Lijnse and R. Plasmeijer. iTasks 2: iTasks for End-users. In M. Morazán and
S. Scholz, editors, Revised Selected Papers of the International Symposium on the
Implementation and Application of Functional Languages, IFL ’09, South Orange,
NJ, USA, volume 6041 of LNCS, pages 36–54. Springer-Verlag, 2010.

7. S. Michels, R. Plasmeijer, and P. Achten. iTask as a new paradigm for building
GUI applications. In J. Hage and M. Morazán, editors, Proceedings of the 22nd
International Symposium on the Implementation and Application of Functional
Languages, IFL ’10, Selected Papers, volume 6647 of LNCS, pages 153–168, Alphen
aan den Rijn, The Netherlands, 2011. Springer.

8. R. Plasmeijer, P. Achten, and P. Koopman. An introduction to iTasks: defining
interactive work flows for the web. In Proceedings of the 2nd Central European
Functional Programming School, CEFP ’07, Cluj-Napoca, Romania, 23-30, June
2007.

9. R. Plasmeijer, P. Achten, and P. Koopman. iTasks: executable specifications of
interactive work flow systems for the web. In R. Hinze and N. Ramsey, editors,
Proceedings of the International Conference on Functional Programming, ICFP
’07, pages 141–152, Freiburg, Germany, 2007. ACM Press.

10. R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, and T. van Noort. An iTask
case study: a conference management system. In P. Koopman, R. Plasmeijer,
and D. Swierstra, editors, Revised Lectures of the International Summer School
on Advanced Functional Programming, AFP ’08, Heijen, The Netherlands, volume
5832 of LNCS, pages 306–329. Springer-Verlag, 2008.

11. R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, T. van Noort, and J. van Gronin-
gen. iTasks for a change - Type-safe run-time change in dynamically evolving
workflows. In S. Khoo and J. Siek, editors, Proceedings of the Workshop on Par-
tial Evaluation and Program Manipulation, PEPM ’11, Austin, TX, USA, pages
151–160. ACM Press, 2011.

12. R. Plasmeijer, P. Achten, B. Lijnse, and S. Michels. Defining multi-user web appli-
cations with iTasks. In V. Zsók, Z. Horváth, and R. Plasmeijer, editors, Proceedings
of the 4th Central European Functional Programming School, CEFP ’11, Revised
Selected Papers, volume 7241 of LNCS, pages 46–92, Eötvös Loránd University,
Budapest, Hungary, 14-24, June 2012. Springer.

13. R. Plasmeijer, J. Jansen, P. Koopman, and P. Achten. Declarative Ajax and client
side evaluation of workflows using iTasks. In Proceedings of the 10th International
Conference on Principles and Practice of Declarative Programming, PPDP ’08,
pages 56–66, Valencia, Spain, 15-17, July 2008.

14. R. Plasmeijer, B. Lijnse, P. Achten, and S. Michels. Getting a grip on tasks that
coordinate tasks. In Proceedings Workshop on Language Descriptions, Tools, and
Applications (LDTA), Saarbrücken, Germany, March 26-27 2011.

15. R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-Oriented
Programming in a Pure Functional Language. In Proceedings of the 2012 ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming, PPDP ’12, pages 195–206, Leuven, Belgium, Sept. 2012. ACM.

16. R. Plasmeijer and M. van Eekelen. Clean language report (version 2.1).
http://clean.cs.ru.nl, 2002.

