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ABSTRACT

Crisis management information often has a geospatial dimension that allows it to be visualized on a map. As
more and more systems are developed as web-based applications, maps have also become a common sight in such
applications. The de-facto solution to add maps to web-based applications is to integrate a third-party service.
For web-based crisis management information systems, this approach has two disadvantages. First, the third-party
service must be available and reachable. Second, by using third-party services you implicitly share what you are
viewing, with the risk of unintentionally exposing sensitive location information. In this Tool Talks paper, we show
how to create a robust and private alternative for web-based maps using open source tools and open data.
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INTRODUCTION

Many crisis coordination systems, such as incident response or command and control systems, deal with geospatial
information. The stereotype image of a command centre typically features a map projected on a large screen.
When designing such crisis management information systems, one of the important design decisions is to choose
what tools to use for this geographic visualization.

A general long-time trend in the development of information systems is to move towards web-based systems.
Modern web-browsers, protocols and standards are powerful enough to build every conceivable application. Even
complex desktop applications such as office suites are now available as web-based versions. With more software
development moving to web-development, it is safe to assume that a significant share of future crisis management
systems will also be developed as web-based systems.

Integrating maps into web-based information systems is trivial. Search giants such as Google and Microsoft’s
Bing provide free application programming interfaces (API’s) that let you integrate their maps easily. Additionally
there are dedicated commercial providers such as Esri or Mapbox that have similar offerings but also offer more
options, services and customizations. A well-known open-source alternative is OpenStreetMap (OpenStreetMap
Contributors 2018b) that can be integrated just as easily.

Integrating these online third-party API’s is a quick and easy solution for integrating a map into a web-based
information system. It also has the added benefit of not having to manage your own map data. However, they also
have some inherent properties that may be problematic for crisis management applications. The first and obvious
property is that they create a dependency on an online third-party provider. Without an internet connection the
maps do not work. This is not an issue for public online systems, which are not available in that case anyway.
But for crisis management systems, that despite being web-based may run on a local network without a reliable
connection to the internet, this can be a serious liability.

Another property that may be less obvious, is that using a third-party map provider is a potential privacy concern.
Web-maps are typically not loaded all at once, but incrementally. By retrieving specific parts of a map, you
implicitly share with the map-provider which geographic region you are looking at. Depending on the level of
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network security, this information could be seen by additional third parties. How sensitive this information is
depends on the specific context, but in crisis management applications one cannot simply assume that it is not
sensitive at all. For example the OCHA policy paper “Humanitarianism in the Cyberwarfare Age“ (Gilman and
Baker 2014) states:

Information about places and objects, such as pre-positioned stocks or medical facilities, is critical to
a humanitarian response, and may be very sensitive.

Although this paper considers protection of personal information to be a more important concern, it still acknowl-
edges the potential sensitivity of location information.

An alternative to using third-party map providers in your web applications is to serve your own map content. This
approach enables several options to improve robustness. You can provide a map service inside a local area network,
making it independent of internet connectivity. Moreovere, for situations where local network infrastrucure cannot
be relied upon, it enables the possibility to bundle maps for offline use. When you use your own map service,
accidental sharing of sensitive locations with a third-party is also not an issue, because no third-parties are involved.

Creating, and serving your own web maps is not as easy as integrating a Google Maps widget, but is not as
difficult as you might expect. With many open sources of geographic information publicly available and a wealth
of open-source tools for storing this information and rendering maps, this is a viable alternative to third-party map
providers. You need a basic understanding of geographic information, but you do not need to be an expert in
geographic information systems (GIS) expert to setup and use these tools.

For this Tool Talks paper we consider the situation in which you are only interested in a relatively small geographic
area and do not need frequently updated maps. In this case the simplest tool-chain suffices: you prepare the maps
once using a batch process, and integrate them in an application using a Javascript library and any basic web server.

The first time we applied this tool-chain was for the Incidone system (Lijnse et al. 2012). This was a prototype
incident coordination system based on the operations of the Netherlands Coast Guard. This system was designed
to be able to operate in a closed network without reliable internet connectivity. Online map services were therefore
not an option.

Since this first prototype the tools that were used to create the such maps have evolved, but the basic process
has stayed the same. In this paper we aim to explain the tool-chain and how to use it to create your own private
maps. We aim for a high enough level of abstraction that it will stay applicable even as details of the specific tools
continue to evolve. Additionally we provide a practical section that helps you set up the tool chain with the latest
software versions (at the time of writing), and helps you understand the roles of various components.

We consider the main contributions of this paper to be:

• An explanation of the necessary tools and process to create your own private web-maps from open data.

• A practical guide to get started, with exercises to further understanding of the tool chain

• A convenient script that automates the process for a concrete example

Because this paper is a Tool Talks paper, it is organized as a practical guide: We start with an explanation of the
necessary preliminary concepts of GIS and web-based maps in “Preliminary Concepts”. This is followed by a
detailed explanation of th tool chain in “The Tool-chain”. We conclude with the practical exercises in “Exercises”
and final remarks in “Conclusion”.

PRELIMINARY CONCEPTS

To set up and use the tool chain we describe in this paper, you do not need to be a GIS expert. However, you need
to have a basic understanding of how maps, and in particular web-based maps, are constructed. In this section we
cover those basic concepts.
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Figure 1. Example of web-based “Slippy map”

Map Basics: Layers, Points, Lines and Polygons

Essentially, a map is nothing more than the projection of things that have a location onto a flat two-dimensional
surface. The basic data model that underlies any map is therefore fairly simple. The simplest thing you can put
on a map is some point in space. Using points you can show the locations of objects. This representation is by
definition an approximation, because a point is infinetely small and any object, even small ones take up some space.
The next entity we can represent on a map is sequence of points, a line. Lines can be used to represent things like
roads or waterways. Another interpretation of a sequence of points is a polygon. In a polygon the points define the
outline of something. This can be used to represent areas: For example plots of land, or the outlines of buildings.
Points, lines and polygons are the basic types of things you can put on a map. The final concept we need is a way
to compose all these features. This is done using the concept of a layer. A layer is simply a collection of lines,
points or polygons. A map is then defined as a stack of layers. Because the mapped objects are projected on a
two-dimensional plane, a layer adds a third dimension. Layers define the order in which a map is drawn. Typically
from bottom to top. This grouping makes it possible to specify that a set of lines that represent roads is drawn on
top a set of polygons that define the underlying land areas. In interactive GIS applications the concept of layers
also makes it easy to interactively show or hide collections of related features.

Storing Geographic Information

Because the data model is very simple you need little to store a geographic dataset. A small collection of points
could easily be stored in a basic spreadsheet with three or four columns. One to hold a (unique) identifier and at
least two more to represent the coordinates of the points. Depending on the type of data the coordinates can have
two or three dimensions. The elevation of points is not always considered. Sometimes elevation has no meaning
for that type of data, but for certain computations, such as determining an accurate distance between two points,
the third dimension is necessary. One thing to note here is that there is more than one way to represent coordinates.
There are different coordinate systems and to interpret a location correctly you need to know the coordinate system
that was used. Luckily these coordinate reference systems are well standardized and documented, but you need to
be careful to interpret the coordinates in the correct reference system.

A simple spreadsheet is enough to store small datasets, but for larger datasets dedicated file formats and relational
databases with geographic extensions are commonly used. Such extensions add additional data types for storing
coordinates in a normal relational database table and add support for querying based on geographic properties. In
this paper we use two file formats and a relational database.

Because of the simple unified data model of layers, points, lines and polygons it is straightforward to create maps
with multiple layers in which the data of the different layers comes from different data sources, even using different
coordinate reference systems. As long as you can select coordinates and map them to a common reference systems
you can combine layers in a single map. Many GIS tools allow you to combine information in this way.

Styling and Drawing maps

To draw a map from geographic data we need a program that takes all the geographical features as input and
computes where and how they should be drawn on a two-dimensional canvas. To do so, a database with geographic
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Figure 2. Zoom level 0: The whole earth on a single tile

features alone is not enough. Whether we use an interactive GIS or a batch program that renders a map to a file,
we need to specify additional information. For lines, we have to decide what color, or shade of gray they have to
be. We also have to know how thick they should be and what type of lines they should be. Dotted, dashed or solid
for example. For points, we need to draw some kind of marker. This can be a simple dot, or a complicated image.
Either way you need to specify what points will look like. For polygons, we also need to define how they will be
drawn. This could again range from a simple solid fill color, to a complex shading or gradient. A final styling
issue that we should mention is the styling of labels. Maps often contain textual labels on the map itself. Labels
are used for things like street names, city names or other noteworthy features. A map rendering program needs to
know how to draw them. It needs to know what fonts and colors to use, and where to align the labels in relation to
the feature.

What is possible in terms of styling depends on the software you use, but to understand the map rendering tool-
chain it is important to know that map rendering typically needs these two orthogonal types of information. What
features to draw on the map, and how to style them.

Slippy Maps

The previous sections have introduced concepts that apply to all types of maps. In this paper we are primarily
interested in maps for web-based applications. The way these typically deal with maps is different from desktop
GIS applications. Typical online maps you may be familiar with, such as Google maps or the openstreetmap.org
home page, use a technique for creating maps called a slippy map. In these maps only a few layers of the map are
dynamically rendered in the web browser. These layers contain the dynamic parts of the map, such as the locations
of your search result, or a visualization of a proposed route. All other layers (landmasses, streets, buildings etc.)
are rendered in aggregation by a server and downloaded by the browser as a collection of images. These images are
called “tiles” and are typically 256 by 256 pixel images. The map application in the web browser only downloads
the necessary tiles for the region of the map the user is looking at, and stitches them together to create a single
bitmap layer. This so called “base layer” is an efficient way to offload the computationally expensive rendering to
a centralized server. Another advantage of this approach is that the tiles do not need to be rendered every time
a browser needs them, but can be cached as pre-rendered images. Tile images and the libraries and applications
that use them use a standardized format. This format is based on a three-dimensional coordinate system. The first
dimension is the zoom level. On the lowest zoom-level, level 0, the map of the entire earth fits on a single square
tile (See figure 2). When zooming in a level, both the width and height of the map are doubled. This means that
at zoom-level 1, the whole map fits on a 2x2 grid of 4 tiles. At zoom-level 2, a 4x4 grid of 16 tiles is used and
so on. The remaining dimensions (x and y) are needed to indicate the column and row on the grid for the given
zoom level. When requesting tiles from a server a standard pattern is used for URL’s. Tile images are requested as
URL’s that end with <zoom>/<x>/<y>.png. For example the URL http://tiles.example.com/4/3/2.png
refers to the tile at the second row in the third column at zoom level four. This standard pattern makes it possible
to use standard web servers to serve the tiles as long as the images are organized in the right directory structure.
When using the tiles, the Javascript slippy map libraries compute which tiles are needed to stitch together the piece
of the map they want to display.

It is important to note that in this scheme, the number of tiles quadruples at every zoom level. This exponential
growth means that at detailed zoom levels, the amount of images for the entire planet becomes unfeasible large to
render in advance. For tile servers that provide such large numbers of tiles, such as the main OpenStreetMap tile
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servers, specific web server software is used that renders tiles on demand, but caches tiles that have been requested
before. When the area you want to cover is not that large, pre-rendering a collection of tiles is possible and is a
simpler strategy.

A statically rendered base map usually serves as the lowest layer of a dynamic map. In an application that uses this
map you typically can add dynamic layers that contain the the objects that are relevant to the application domain
on top of it. All of the common slippy map libraries allow you to this.

THE TOOL-CHAIN

The goal of the tool-chain we explain in this paper is to create a pre-rendered tile-layer that can be used locally.
We approach this by illustrating how to replicate a relevant subset of the collection of tiles that make up the
OpenStreetMap “Standard Tile Layer“ (OpenStreetMap Contributors 2018c). We largely use the same tools as
are used by the main tile servers of openstreetmap.org. These official tiles are created using definitions from
the openstreetmap-carto project (Allan et al. 2018). Because this is our starting point, we often refer to tools or
resources found in the public repository of this project troughout this section.

In the remainder of this section, we explain the tasks that need to be completed to accomplish our goal without
going into specifics. We do not show the exact details of the programs and scripts that need to be executed. These
details can be found in “Appendix: Script”,

Preparing Basic Infrastructure

To create the tile collection we do not use a single integrated tool. The tool-chain consists of different programs
and scripts that tie them together. Most of those tools work on multiple operating systems and do not necessarily
need to be deployed together on a single machine. For sake of simplicity we assume a single machine configuration
running the Ubuntu Linux 18.04 operating system. On this Linux distribution most of the software we use is
available in its standard package repositories. It is also the operating system on which we have tested and used the
tool-chain.

Aquiring Geographic Data

The first thing we need is the geographic data that will be put on the map. There are various providers of open
geographic data that publish free datasets. Because we are recreating the OpenStreetMap tiles, the primary data
set we use is the OpenStreetMap database. The full database is available from planet.openstreetmap.org, but
is fairly large (43GB at the time of writing). Depending on your application, you may not need data for the entire
planet. In that case you can download an extract from a provider such as GeoFabrik (Geofabrik GmbH 2018) that
offers many regional extracts.

To exactly recreate the standard OpenStreetMap tiles, just the OpenStreetMap data is not enough. We need
several additional data sets from Natural Earth (Natural Earth 2018). These provide relatively static features
such as as country borders and land masses. We also need a set of preprocessed data that is derived from the
main OpenStreetMap data. These contain, for example, coast-line polygons that are simplified to create smoother
maps at lower zoom levels. The openstreetmap-carto repository contains a script that automates downloading and
indexing these additional data sets.

Aquiring Additional Style Resources

As explained in section “Preliminary Concepts”, we also need styling definitions, marker images and fonts to be
able to render the map. With the exception of the fonts, these are all included in the opentreetmap-carto repository.
The fonts used in the style definitions should be installed on the operating system such that the map rendering tools
can find them.

Storing and Preparing the Geographic Data

The tool that actually renders the map cannot work with the distributed form of the OpenStreetMap database
directly. The planet dataset (or an extract) is published in a compressed format that is optimized for distribution.
It is not structured to allow efficient querying of the data which is needed to create the map. To use the data it
needs to be stored in a form that can be easily queried. The standard solution for doing this with openstreetmap
data is to use the PostgreSQL database management system (The PostgreSQL Global Development Group 2018)
with the PostGIS (PostGIS Contributors 2018) extension. Using a tool called “osm2pgsql” you can import an
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openstreetmap dataset into a PostgreSQL database. When used on an empty database it will create a standardized
database schema to import the data to. To create the standard tiles the osm2pgsql import tool is run with a
customized script from openstreetmap-carto that filters and and transforms the data during import. Data from the
data set that is not shown on the map is not even imported into the database. This is efficient, but also means that
it limits your ability to customize the map later on.

The additional datasets are in “shape file” format and do not need additional processing. They can be used by the
map rendering software directly.

Preparing the Map Style Configuration

The last piece of preparation that needs to be done is to create the configuration that will drive the map rendering
process. Which layers will be drawn on the map, what data is needed for those layers and how the layer will look
needs to be defined. The rendering tool, that is explained in the next section, relies on a single XML document as
its configuration. For tiles as complex as the openstreetmap standard tiles, writing such a single document directly
is not very user friendly. CartoCSS (MacWright et al. 2018) is a style language very similar to Cascading Style
Sheets (CSS), the standard for styling web pages. The openstreetmap-carto project uses the CartoCSS language
to define the style of the tiles in a modular collection of style files. A special compiler named “carto” is used to
translate these CartoCSS styles into the XML document needed for rendering.

Rendering the map

Rendering the map, the creation of the collection of tile images, is done using a tool called “Mapnik” (Pavlenko
2018). Unlike the other tools in the chain, Mapnik is not a standalone program. Mapnik is a software library
that you can use in your own programs. It provides interfaces for different programming languages, but we only
need the interface for the Python programming language. More specifically, we customize a Python script from
the OpenStreetMap project (OpenStreetMap Contributors 2018a) that uses Mapnik to render a collection of tiles.
This script is exactly what we need to achieve our main goal. By default the script creates tiles for a number of
hardcoded example regions. To use the script, the only additional step is to replace these regions by the regions
that we want to create maps for.

Testing the Map

The last stage of the tool-chain is using the tiles in a web application. This requires two components. The first is a
slippy map Javascript library that ties the dynamic data from your web application to a static tile-based layer. To test
the maps we use Leaflet (Agafonkin 2018). This slippy map library is also used on the main openstreetmap.org
website. Embedding a Leaflet map in a webpage is straightforward and the Leaflet website offers examples on how
to create a map and add tile-based layers. The second component needed to test the map is a basic webserver to
serve the tiles, the leaflet library and a web page that glues them together. Because the collection of tiles is just a
directory structure of image files, it can be served by any web server software.

Using the Map

In the original Incidone use case, and in other applications where we used these tools, we used the iTask Framework.
(iTasks Contributors 2018) This framework comes with a built-in web server that can serve the pre-rendered tiles. It
also provides tight integration with the Leaflet library that enables the manipulation of the maps through an abstract
datastructure without the need to program the low-level Javascript details. Similar integrations are available for
other programming languages and web-application frameworks.

EXERCISES

The intend of this paper is to help you understand the tool-chain, and to enable you to customize it to the needs of
your applications. In this section we provide some exercises to challenge you to explore and learn how to use the
tools.

CoRe Paper – Tool Talks
Proceedings of the 16th ISCRAM Conference València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds. 1145

openstreetmap.org


Bas Lijnse Robust Private Web Maps with Open Tools and Open Data

Figure 3. A mimimal rendering without the openstreetmap data

Set up the tools

The first exercise is to actually get the toolchain set up, to generate some tiles, and to view them in a simple web
page. To help you get started we have created a basic shell script that executes all the necessary steps to set up
the tools, to download the required data, and to render a first map. It is included as an appendix to this paper in
“Appendix: Script”.

With this script you should do the following:

• Prepare a machine running Ubuntu Linux 18.04,

• Download the script,

• Run the script, or to learn what’s involved, execute all the steps in the script manually.

When succesful, you now have a basic set up for creating tile collections that you can change to your liking.

Simplify the Map

The standard OSM tiles contain many layers. Their definition may be overwhelming at first. In this exercise the
goal is to reduce the map to the bare minimum and remove all the layers that use the OSM PostgreSQL database.
To do this:

• Find the file that defines the layers of the openstreetmap-carto style,

• Figure out which layers are created from the shapefiles and which are created from the PostgreSQL database;

• Create a copy of the file with all the database-based layers removed;

• Create a Mapnik stylefile from this copy;

• Re-generate the tile collection with this alternative style.

When you test your map, you should now only see a basic map without any streets, buildings etc. as shown in
figure 3.
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Figure 4. A brightly colored alternative map styling

Change the Map Style

The OpenStreetMap standard layer is a well designed map, but your own local maps can look any way you want.
By using the openstreetmap-carto style as a starting point you can tune it to your liking. In this exercise the goal
is to change the way a common feature is rendered.

• Find out where the color of city streets is defined;

• Change the color to something bright and recognizable;

• Re-create the Mapnik stylefile;

• Re-generate the tile collection with this alternative style.

Your map should now be rendered with your new favorite color, similar to figure 4.

Change the Map Data

When you have followed the script, your database will now contain (part of) an up-to-date OpenStreetMap data
set. Having a local copy of this data allows you to modify it before you render your maps. In this exercise the goal
is to explore the PostgreSQL database and modify or remove some of the data.

• When viewing your map, choose a point of interest. For example a streetname or building;

• Figure out how this feature is represented in the PostgreSQL database;

• Update or remove those records from the database;

• Re-generate the tile collection.

For example, in figure 5 you see a map of the city of Valencia that has been aptly renamed for the occasion.

RELATED WORK

The amount of open source tools for working with geographic information is very large. The tool chain presented
in this paper is just one of many possible options for adding private maps to web applications. A large part of the
specific setup of this toolchain is based on the installation instructions of openstreetmap-carto, because we chose
to take the current version of the openstreetmap tiles as our starting point.

In this paper we explicitly focused on creating pre-rendered tile collections because of their simplicity, and because
they are easy to deploy as bundled assets with a web application. If you are instead interested in creating a
dedicated tile-server with on-demand rendering and caching of tiles, the “Manually building a tile server” guides
from switch2osm.org (Fairhurst 2018) are a good starting point.
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Figure 5. A custom rendering with a renamed city

The tool-chain we presented consists entirely of command line tools and scripts. This makes it very suitable for
customization and automation on server machines. As an alternative, you could also use a desktop GIS application
like QGIS (QGIS Contributors 2018) to define and style a map and use it to export tiles. Either through embedded
scripting or by using a dedicated plugin.

This paper provides a pragmatic starting point for creating your own private maps from open data. We provide just
enough background information to understand what the tools do, what their interfaces are, and how they depend
on each other. It should be enough if all you need is a robust private replacement for popular third-party API’s
such as Google Maps. If you want to know more about cartography with open source tools, the website of the
Open Source Geospatial Foundation (OSGeo 2018) is a good starting point.

CONCLUSION

In this paper we have shown the process of making your own collection of tile images from open data to use as a
base layer in web-based maps. This approach enables the use of maps in web-based systems without relying on
third-party online map service providers. This approach can therefore make the use of web-based maps both more
private and more robust

The tool-chain to achieve this goal consists of all open source tools that are freely available. To use them together
however, you need to have some background knowledge of GIS concepts thats is often implictly assumed. The
aim of this paper is to explain the tool-chain, along with the necessary context, independent of specific details of
the individual tools. By understanding the process and how the various pieces work together, it becomes possible
to adapt to future changes in the specific tools.

Although we expect the tools to evolve, we have included a concrete example based on the tool chain at the time
of writing. Additionally we have included several exercises to explore how the chain can be customized. Together
with the explanation at the conceptual level, it should enable you to begin using robust private maps created from
open data in your own web-based crisis management information systems.
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APPENDIX: SCRIPT

This section contains the script used to setup and test the toolchain verbatim. It is publicly available online at
https://gitlab.science.ru.nl/baslijns/web-maps-scripts.
# ! / b i n / bash
# Th i s s c r i p t s s e t s up a t o o l c h a i n f o r r e n d e r i n g t i l e c o l l e c t i o n s f o r
# p r i v a t e web−maps .
# Th i s s c r i p t assumes e x e c u t i o n as r o o t u s e r on an Ubuntu 18 .04 sys tem

### Aqui re g eoda t a ###

# Make s u r e b a s i c u t i l i t i e s a r e i n s t a l l e d
ap t−g e t upda t e
ap t−g e t i n s t a l l −y sudo wget g i t py thon n o d e j s npm

# Clone t h e open s t r e e tmap −c a r t o g i t r e p o s i t o r y
# Th i s w i l l be t h e s t a r t i n g p o i n t f o r
g i t c l o n e h t t p s : / / g i t h u b . com / g r a v i t y s t o r m / open s t r e e tmap −c a r t o . g i t

# Download t h e map p r ima ry map d a t a
wget h t t p : / / download . g e o f a b r i k . de / eu rope / spa in− l a t e s t . osm . pbf
mkdir −p open s t r e e tmap −c a r t o / d a t a

# Download and index t h e a d d i t i o n a l map d a t a a s s h a p e f i l e s
ap t−g e t i n s t a l l −y mapnik− u t i l s
cd open s t r e e tmap −c a r t o
py thon s c r i p t s / ge t− s h a p e f i l e s . py
cd . .

# I n s t a l l and c o n f i g u r e a PostgreSQL RDBMS wi th GIS e x t e n s i o n s
# Also c r e a t e a d a t a b a s e named ’ g i s ’ t h a t w i l l ho ld t h e OSM d a t a
ap t−g e t i n s t a l l −y p o s t g i s
/ e t c / i n i t . d / p o s t g r e s q l s t a r t
sudo −u p o s t g r e s c r e a t e u s e r −s r o o t
c r e a t e d b g i s
p s q l −d g i s −c ’CREATE EXTENSION p o s t g i s ; CREATE EXTENSION h s t o r e ; ’

# Impor t t h e p r ima ry map d a t a i n t o t h e d a t a b a s e
ap t−g e t i n s t a l l −y osm2pgsql

cd open s t r e e tmap −c a r t o
osm2pgsql −G −−h s t o r e −− s t y l e open s t r e e tmap −c a r t o . s t y l e −−t ag− t r a n s f o rm − s c r i p t open s t r e e tmap −c a r t o . l u a −C 1600 −d g i s d a t a / spa in− l a t e s t . osm . pbf
cd . .

### C r e a t i n g t h e t i l e s ###

# C r e a t e t h e mapnik s t y l e s h e e t u s i n g t h e c a r t o comp i l e r
npm −g i n s t a l l c a r t o
ap t−g e t i n s t a l l −y f o n t s −noto−c j k f o n t s −noto−h i n t e d f o n t s −noto−u n h i n t e d t t f −u n i f o n t

cd open s t r e e tmap −c a r t o
c a r t o p r o j e c t . mml > osm . xml
cd . .

# I n s t a l l t h e mapnik l i b r a r y and t h e py thon b i n d i n g s
ap t−g e t i n s t a l l −y python−mapnik

# Download a s c r i p t t h a t r e n d e r s b a t c h e s o f t i l e s
wget h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com / o p e n s t r e e t m a p / mapnik− s t y l e s h e e t s / mas t e r / g e n e r a t e _ t i l e s . py
# Remove t h e g e n e r a t i o n o f t i l e s f o r t h e example c i t i e s i n t h e s c r i p t
# and d i s a b l e s t r i c t l o a d i n g of t h e osm . xml f i l e
head −n 216 g e n e r a t e _ t i l e s . py | sed " s / mapnik . load_map ( s e l f .m, map f i l e , True ) / mapnik . load_map ( s e l f .m, map f i l e , F a l s e ) / " > c u s t o m _ g e n e r a t e _ t i l e s . py
# Add a c i t y o f our own ( Va l e n c i a ) t o be r e n d e r e d i n d e t a i l a s an example
echo " r e n d e r _ t i l e s ( ( −0 . 4 9 , 3 9 . 3 7 , −0.24 , 3 9 . 5 6 ) , map f i l e , t i l e _ d i r , 1 , 16 , \ " Va l e n c i a \ " ) " >> c u s t o m _ g e n e r a t e _ t i l e s . py
# Run t h e s c r i p t t o r e n d e r t h e t i l e s
mkdir −p t i l e s
MAPNIK_MAP_FILE= opens t r e e tmap −c a r t o / osm . xml MAPNIK_TILE_DIR = . / t i l e s py thon c u s t o m _ g e n e r a t e _ t i l e s . py

### T e s t i n g t h e map ###

# I n s t a l l and c o n f i g u r e Nginx t o s e r v e a s imp l e web−page wi th a L e a f l e t i n s t a n c e
ap t−g e t i n s t a l l −y ng inx
npm −g i n s t a l l l e a f l e t

# Con f i gu r e ng inx
echo " s e r v e r {" >> / e t c / ng inx / con f . d / p r i v a t emap . con f
echo " l i s t e n 8000 ; " >> / e t c / ng inx / con f . d / p r i v a t emap . con f
echo " l o c a t i o n / { r o o t $ ( pwd ) / t i l e s ; i ndex index . h tml ; }" >> / e t c / ng inx / con f . d / p r i v a t emap . con f
echo " l o c a t i o n / l e a f l e t { a l i a s / u s r / l o c a l / l i b / node_modules / l e a f l e t / d i s t ; }" >> / e t c / ng inx / con f . d / p r i v a t emap . con f
echo "}" >> / e t c / ng inx / con f . d / p r i v a t emap . con f

ng inx ; ng inx −s r e l o a d

# C r e a t e a minimal h tml page t h a t s e r v e s an i n s t a n c e o f
# t h e l e a f l e t j s s l i p p y map wi th our map added as t i l e l a y e r
echo "< html >" >> t i l e s / i ndex . h tml
echo "< head >" >> t i l e s / i ndex . h tml
echo "< l i n k r e l = \ " s t y l e s h e e t \ " h r e f = \ " / l e a f l e t / l e a f l e t . c s s \ " >" >> t i l e s / i ndex . h tml
echo "< s c r i p t t y p e = \ " t e x t / j a v a s c r i p t \ " s r c = \ " / l e a f l e t / l e a f l e t . j s \ " > </ s c r i p t >">> t i l e s / i ndex . h tml
echo " </ head >" >> t i l e s / i ndex . h tml
echo "<body >" >> t i l e s / i ndex . h tml
echo "< d iv i d = \ " map \ " s t y l e = \ " wid th : 100%; h e i g h t : 100%;\" > </ div >" >> t i l e s / i ndex . h tml
echo "< s c r i p t t y p e = \ " t e x t / j a v a s c r i p t \ " >" >> t i l e s / i ndex . h tml
echo " va r m = L . map ( ’ map ’ ) . se tView ( [ 3 9 . 4 6 3 3 , −0 .3633] , 1 3 ) ; " >> t i l e s / i ndex . h tml
echo "L . t i l e L a y e r ( ’ h t t p : / / l o c a l h o s t : 8 0 0 0 / { z } / { x } / { y } . png ’ , { a t t r i b u t i o n : ’&copy ; Opens t r ee tmap C o n t r i b u t o r s ’ } ) . addTo (m) ; " >> t i l e s / i ndex . h tml
echo " </ s c r i p t >" >> t i l e s / i ndex . h tml
echo " </ body >" >> t i l e s / i ndex . h tml
echo " </ html >" >> t i l e s / i ndex . h tml

# Done
echo "You can view your map a t h t t p : / / l o c a l h o s t : 8 0 0 0 /
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