
Towards Emergency Software Development
with iTasks

Bas Lijnse
HAN University of Applied Sciences /

Radboud University Nijmegen
bas.lijnse@han.nl

Abstract—Software development is not an activity that
immediately comes to mind during, or immediately after,
a disaster. But when existing systems are disrupted,
new (temporary) processes with new information needs
emerge. Makeshift systems based on a combination of
general purpose tools and creative new uses of existing
systems are “developed” all the time. In this paper
we take the position that implicitly emergency software
development is already happening and explore a more
explicit approach in the context of a concrete software
development framework: iTasks. iTasks is a task-oriented
programming framework that was designed for rapid
specification of information systems with crisis man-
agement applications in mind. Other constraints (rapid
deployment, reliable operation and decommissioning)
on development of temporary systems during, or after,
disasters were not explicitly considered. We argue why we
consider a framework like iTasks a good starting point
for emergency software development, but also present a
research agenda of topics that still need to be addressed
to enable task-oriented development in this context.

Index Terms—Emergency Software Development,
Temporary Information Systems, Recovery, TOP, iTasks

I. INTRODUCTION

When a disaster leads to a crisis, we generally do not
think of software development as a possible activity
to mitigate that crisis. Software, despite the emphasis
on agility that’s been a major trend in recent years, is
something that takes time to create, and often relies on
complex infrastructure to operate. And although there
are many different types of disasters and crises, a lack
of necessary infrastructure and a need to resolve the
situation as quickly as possible are common attributes.

However, if we broaden the definition of software
development to include all activities in which a new
solution to a problem is devised by composing a con-
figuration of components that store and automatically
process information, we can say that to some extent,
software development, or at least system development,
is already common in crisis responses. Makeshift
information systems consisting of a combination of
general purpose tools like spreadsheets, and creative
new use of existing systems are developed all the time.
Information collection and processing is an integral
part of crisis management, and without integrated
solutions, one has to work with what is available.

One could argue that the development of new
systems during or after serious crises is practically

impossible or that the status quo of using of general
purpose tools is good enough. In this paper we take
the more optimistic position that there is room for
improvement: Crises can be contained, and recovered
from, faster when custom software tools to support
unforeseen tasks could be developed quickly and de-
ployed reliably. We’ll develop this idea in the context
of a concrete software development framework: iTasks.

The remainder of this paper is organized as follows:
In section II we introduce the notion of Emergency
Software Development by making an analogy with
emergency shelter. In section III we discuss the iTask
framework as a concrete starting point for facilitating
emergency software development, and continue with
a discussion of research and development topics that
still need to be addressed in section IV. In section V
we take a look at related work and conclude with final
remarks in section VI.

II. EMERGENCY SOFTWARE DEVELOPMENT

To the best of our knowledge, no software devel-
opment tools exists that are explicitly designed to
address emergency software development. By emer-
gency software development we mean the creation
of temporary software systems after a disaster has
disrupted existing systems. We consider this to be
a software development niche in its own right, with
specific constraints and considerations.

To illustrate the difference between emergency soft-
ware development and regular software development
we’ll use the common comparison between real estate
development and software development. Let’s compare
the way we approach the basic human need for shelter
from our environment in normal (in our case Western
European) conditions to how this need is approached
in crisis situations.

When we create houses or other buildings to live
in, we consider more than just our basic need for
shelter. We also want houses that are comfortable,
good looking and provide privacy. A consequence of
these additional wishes is that construction of such
buildings takes more time and effort, and requires
costly materials. To justify this investment, we have
to recoup the costs over many years. This creates
an additional constraint on the durability of materials
used, and means that design choices cannot be made



lightly because we have to live with their implications
for a long time.

When we have a sudden need for shelter, for ex-
ample because a natural disaster destroyed existing
houses, we make different choices. A minimum level
of safety is more important than comfort and aes-
thetics. Fast provisioning of materials and construc-
tion are more important than durability. Because of
these different priorities, the construction materials and
methods that are used to build permanent structures are
not suitable to use to create temporary shelters. And al-
though, many materials can be, and are, used to create
improvised temporary shelters, solutions specifically
designed for these situations exist. These solutions
range from simple tents, to fully equipped shipping
containers. In these solutions the constraints of emer-
gency situations have been considered in their design.
For example, a deliberate trade-off is made between
the speed of deployment and the level of comfort
such temporary structures provide. Simply put, when
compared to a house, a tent is only a very crude type
of shelter, but when compared to an improvised shelter
of re-purposed materials it can make a big difference.

Information collection, processing and distribution
plays an important role in our society. To facilitate
these activities, we invest in complex software systems
and infrastructures. Just like buildings, these are often
costly investments that take time to design and build.
Also just like buildings, non-functional considerations
such as aesthetics and durability are taken into account.

In crisis situations, there is also a need to collect and
process information. But unlike the need for shelter,
no tools exists to quickly and efficiently create tem-
porary emergency information systems. Sub-optimal
solutions based on a combination of generic software
(spreadsheets, word processors and communication
tools) with pen and paper are still common.

The software development tools to create such
emergency information systems would have to have
some key properties: First, the specification of the
information system must take little time. Second, the
operational system should be deployed quickly and
work reliably during its limited lifetime and third,
it should be easy to decommission the system and
transition to a better alternative or more permanent
solution. These are challenging requirements, but just
as with temporary shelter, it is acceptable to make
compromises. In this case on non-functional properties
of the information systems.

III. TOP SOFTWARE DEVELOPMENT WITH ITASKS

The observation that no software development tools
to create emergency information systems exist only,
identifies a problem. A design problem for which no
single correct solution exists. Different technologies
can be valuable to some extent. In this paper we look
at one specific software development framework as
a starting point. Although we argue why we expect

Fig. 1. Incidone: An example of a web-based information system
made with iTasks

this framework to be useful for this purpose, we don’t
claim it to be the only, or best solution.

The framework we consider is the iTask framework
(iTasks for short). It is a framework for Task-Oriented
Programming (TOP) which has been the focus of most
of our prior work on information systems for crisis
management. TOP is a programming paradigm for
developing interactive multi-user systems. As implied
by the name, it is about writing programs using ”Task”
as central concept. The main idea is that computer pro-
grams support people in accomplishing certain tasks,
or autonomously perform tasks. If we can precisely
define the task that needs to be accomplished, or
can decompose a complex task into smaller simpler
tasks, we should have enough information to generate
executable systems that support those tasks. Technical
infrastructure of an interactive information system
(handling events, storing data, encoding/decoding etc.)
can be factored out and solved generically.

Applications in the domains of command and con-
trol and crisis management have played an important
role in the development of the TOP paradigm and
the specification language of the iTask framework ([5,
7]). For example, search and rescue operations of the
Netherlands Coastguard were used to test early ver-
sions of the specification language ([8]). This case later
served as inspiration for the Incidone demonstrator
project ([6]) in which a basic incident management
system was developed with iTasks (see Figure 1).

There are two reasons why iTasks could be good
starting point to consider as a platform for developing
emergency information systems. The first reason is
that the main concern when writing TOP specifications
is determining what tasks need to be done, what
information is needed to do those tasks and who can
do them. These activities align with processes like
sense-making and coordination which need to happen
anyway when existing processes have been disrupted.
The formal structure that TOP specifications provide
to describe and interrelate tasks may even be valuable
without its normal purpose of defining an executable
information system.



The second reason to consider iTasks is its focus
on minimal specification. Concise specification has
always been part of the functional and task-oriented
paradigms and is therefore a central aspect of TOP
programming with iTasks. Compact specification of
main concerns is traded for ease of control over details.
With iTasks, complete executable information systems
are generated from compact specifications of tasks,
their relations and the information that is used by them.
This is only possible if most of the underlying infras-
tructure is realized using high-level generic algorithms.
For example, user interfaces are (by default) generated
automatically based on the structure of information
and the structure of tasks in which it is used.

This choice of priorities aligns with the constraints
of emergency situations. Although a UI designed
specifically for a task by an experienced designer will
in most cases be better than what can be generated
automatically, a generic algorithm will always be
faster than any human designer. In a crisis situation
it is preferable to have something that’s good enough
quickly, than to have some better too late.

IV. TOWARDS DISASTER READINESS

In the previous section we have introduced the iTask
framework, and argued why we consider it a suitable
starting point for developing a suite of emergency
software development tools. However, if it would be
used in a response today, it would still be of limited
value. There is more to software than specification and
programming alone. To make iTasks work as an emer-
gency software development platform, we also need to
consider the constraints on deployment, operation, and
eventually decommissioning of the temporary systems
we specify. In this section we discuss those areas
in which work can, or should, be done to define a
roadmap towards disaster readiness.

Although many of the topics covered in this section
will end up on the backlog of the iTasks development
team eventually, we present them in the this paper early
and publicly as an open invitation for collaboration,
to invite criticism and allow our assumptions to be
challenged.

A. Specification

The specification language used in iTasks was de-
signed with crisis management use cases in mind.
It is expressive and flexible enough to model the
complex combinations of tasks that are performed
during response operations.

The specification of tasks, and thereby developing
the system to support those tasks, was considered to be
part of the preparation phase. If we want to be able to
specify additional emergency systems during a crisis
there are more concerns to consider.

1) Third-Party Integration: Although the key idea
of this paper is the creation of new temporary infor-
mation systems in the unstable phase after a disaster

or crisis, this does not imply that you should not make
use of other tools when they are capable of supporting
some the tasks that need to be done. Being able to
integrate with other tools and information systems is a
way to reduce the scope of the temporary system and
therefore the amount of time and resources needed to
create it.

At the time of writing, the iTask framework supports
different methods for integrating with other systems.
There are built-in task definitions for running external
programs, calling web-services, and perform low-level
communication over TCP/IP. There are also libraries
for accessing some popular relational databases.

Support for such integrations has been added
demand-driven however. The API’s provide only those
functions that were needed for specific applications
were created. To increase the chances of being able
to integrate with a third party system quickly, would
require a library of pre-made adapters and utilities. A
systematic survey of integration methods to create a
library of utilities for easy integration with arbitrary
third-party systems has never been done. The design
and implementation of such a library, or suite of tools,
would be a valuable addition to the iTasks ecosystem.

2) Improvement of User Interface Generation Al-
gorithms: The iTask framework contains algorithms
that can generate a user interface for any task that
processes any type of data. However, the usability of
these generated interfaces is not always satisfactory.
The framework provides a user interface layout lan-
guage that enables user experience (UX) designers to
specify customized interactions for specific tasks. For
temporary information systems, such investments will
likely be too time consuming in many cases.

If custom UX designs are not possible, the only
other option is to find out if improvement of the
usability of the generated user interfaces is possible.
To find out, two questions need to be answered. First,
what are common patterns found in user interfaces
of information systems? And second, is it possible
to express these patterns using iTasks’ user interface
layout language?

B. Deployment

The iTask framework has been developed first and
foremost as a research platform and as a reference
implementation to experiment with the TOP paradigm.
For that purpose, the practicalities of deploying appli-
cations were never that important. If we want to further
explore the development of emergency information
systems with iTasks, deployment of applications be-
comes important. For systems that are intended to be
used for a short time, development time is relatively
large when compared to the time that the system is
used. Therefore the combined overhead of all devel-
opment tasks is also costly and worth looking at.

1) Deployment to Cloud Platforms: If we first con-
sider cases where internet infrastructure is unaffected,



the first strategy to reduce the effort of deploying iTask
applications during an emergency is to make use of
common cloud providers. The main idea would be to
prepare automated workflows for deployment to such
platforms in advance. When all tasks, from building,
to packaging an iTask application as VM or Docker
image, to the provisioning of a VM, are automated in
advance, the task of deploying an application would
be reduced to simply providing credentials for a cloud
service. Given that popular platform like Amazon’s
AWS or Microsoft’s Azure have public API’s this
approach is theoretically trivial, but given the amount
of third party tools and services involved could be a
challenging software development project. Especially
if you also want to consider multiple platforms to
increase the chances of at least one of the services
being unaffected by the disaster.

2) Deployment to Linux Live Distributions: The
other end of the spectrum is the case where no
infrastructure is available at all. In those case we have
to rely on deployment to local physical machines.
The standard approach would be to facilitate building
installers or packages for popular operating systems.
However, this would mean that multiple versions for
different operating systems would have to be created
and without infrastructure you can’t rely on automatic
downloading of necessary dependencies.

A deployment strategy that can circumvents these
issues is deployment as customized Linux live distri-
butions preloaded with the system you want to deploy.
By this we mean the creation of DVD’s or USB
thumb drives that contain a complete Linux operating
system with the emergency information system already
installed and ready to use. This allows you to use any
salvaged computer to run your information system.

We have some experience with creating live Linux
systems with iTask applications before, but the process
of creating the images was never automated. It would
be interesting to explore to what extent this process
could be automated and integrated with other devel-
opment tools. Additionally it would be interesting to
investigate with what range of hardware this approach
can work and what kind of resource constraints apply.

3) Deployment to Mobile Platforms: In the previ-
ous sections we have implicitly assumed deployment
to average PC or server hardware, but a deployment
target we should not ignore is deployment to mobile
platforms. Originally iTasks was designed as a frame-
work to create web-applications [10]. For deployment
this means that applications have a central server
which is accessed using web browser software. This
architecture implies that a network with a central
server that can be reliably accessed is available. In a
situation where networks are unreliable, this architec-
ture is not very robust. An experimental fork of iTasks
exists that uses a fully distributed architecture and
allows the traditional server-side of iTask applications
to be embedded inside Android applications on various

mobile devices. This approach enables deployment
configurations consisting only of mobile devices.

At the time of writing, this fork is still a proof-
of-concept. To make it a viable option for deploying
iTasks applications, several non-trivial problems will
have to be solved. For example, the common way of
deploying mobile applications is through centralized
“App Store” infrastructure. Additionally, very specific
tool-chains are often needed to compile and package
mobile applications. The challenge is therefore to
integrate these tools with the iTask framework in such
a way that no additional overhead tasks are required
from the developer and that no dependencies on “App
store” infrastructure are created.

4) Learning and Training: Another topic that re-
quires extra attention in the development of emergency
systems is learning and training. This is not a technical
deployment problem, but equally important. Learning
how to use a new system is necessary if the system is
to have any value. In the case of temporary information
systems, the overhead of learning to use the system is
relatively large. The (perceived) lack of time to learn
may be a reason by itself to not use any new system.
This means that making iTasks based information
systems easy to learn could be critical to the usefulness
of iTasks as a framework or temporary information
systems, and has not yet been investigated.

C. Operation

Emergency information systems are created to be
used in an environment where reliability is a top
priority. If the tools can’t be trusted to work, the risk
they impose is greater than their added value.

1) General Quality of Service: All of the points
raised in this paper will, when addressed, result in
changes to the iTask framework. An issue that every
software project has to deal with, but that should
be stated explicitly, is that these changes should not
negatively impact the quality of the framework.

iTasks originated as a research prototype, and has
always prioritized innovation over robustness. As a
result there is technical debt that makes it suitable
for demonstrations and experiments, but constitutes
a risk for reliable deployments. Even for temporary
deployments.

To be able to explore emergency development with
iTasks based temporary systems, this priority has to
change. At least for the known temporary lifespan of
these information systems they should run reliably. If
not, the tool that you intended to help you recover
from a crisis, will cause more trouble than its worth.

As the focus has shifted from pure exploratory work
towards questions of applicability in specific areas, the
need for a reliable core iTask system has grown. The
development team has therefore adopted industry best
practices such as continuous integration. With nearly
a decade of evolution of the software in an academic
setting though, there is still work to be done.



2) Modification During Operation: Software devel-
opment projects have a history of taking longer than
planned. It is therefore not unlikely that a system that
was intended to be only temporary, will be used be-
yond its planned lifespan and may have to be modified.
The standard solution would be to create a new version
from the original sources and migrate persistent data.
However if we consider the situation where temporary
systems are rapidly created in an unstable environment
it is not unlikely that original sources and development
tools are lost, but the deployed system remains. A
solution would be to automatically bundle all sources
and development tools that are needed to modify an
information system when building and deploying it.
How to do this is not immediately obvious. Exploring
this approach is an interesting technical challenge and
could lead to systems that are more easily patched
when there use extends their expected lifetime.

D. Decommissioning

While vendor lock-in may be a common busi-
ness strategy in commercial software development, it
should be actively prevented in emergency systems.
Data-entry tasks require valuable resources, and when
the data cannot be easily transferred from the system
they have to be repeated later. When a system is
intended to be temporary, transition to its inevitable
successor should be made as painless as possible. The
question of how to create information systems that are
easy to decommission without loss of data is one worth
investigating further.

1) Extend Generic Data Exchange: The simplest
way to prevent lock-in is to make data exporting
a standard feature of every emergency information
system. In iTasks, the high level TOP specifications are
turned into executable systems with the help of type
driven generic programming. This technique is used
to generate user interfaces, provide persistence and to
visualize data. It would be interesting to see if the type
of algorithms could be used to make it easier to export
data in iTasks based information systems to a common
data exchange formats. This approach could provide
a fail-safe way to export data with little work. The
primary question would be which formats to target.

2) Generation of Semantic Context Information for
Data Exports: While the ability to export data from
temporary information systems to convenient is a nec-
essary condition for migration to their more permanent
successors, it is not sufficient. To migrate the exported
data to another system, you need to know the origin
and meaning of the data. This information can be
learned from development documentation, or when
that is not available, by examining the information
system from which the data was exported. Good doc-
umentation about the data makes migration easier, but
is costly to produce. With iTasks applications it may
be possible to generate parts of this documentation
automatically. TOP specifications contain information

about tasks, their relation and the information they
produce and consume. Therefore it should be possible
to analyze where for which tasks data in an informa-
tion system is used, and which tasks produced certain
information. Prior work on the visualization of TOP
specifications ([13, 12]) has shown that it is possible to
extract visual representations of iTasks specifications
similar to BPMN (Business Process Modeling and
Notation) that illustrate the composition of tasks and
their dependencies. If would be interesting to see if this
work could be extended to automatically produce the
necessary context information when data is exported
from an information system.

3) Automatic Migration: Emergency information
systems are created for temporary use. The eventual
migration of information to a successor system should
therefore be considered a normal and expected part of
the system’s use. Being able to export all information
is only half of the solution. The exported data will have
to be imported into the replacement of the emergency
system. If this is a system that has no capabilities for
importing data (for example when it is a system that
was temporary offline, but has been restored), getting
the information into new system can be challenge.

There are tools, like for example Selenium or
PhantomJS, that allow arbitrary user interfaces to be
accessed programmatically. Such tools are commonly
used to automate testing of programs. It would be
interesting to explore to what extent such tools could
be used to automate the migration of the exported data
to systems that do not support data importing directly.

V. RELATED WORK

As already mentioned in II, we are not aware of
any tools or studies that focus on emergency software
development as an explicit activity. This does not
mean that there are no research results or technologies
that address some of the same or similar issues as
those discussed in this paper. Most of the challenges
we foresee exist to some extent in all types of soft-
ware development, but with less priority or urgency.
Additionally, to understand the different context that
sets emergency software development apart from other
software development types, we can build upon studies
that have examined past disaster and crisis responses.
Especially those that focus on information systems.

To identify recent work that could be of relevance,
we have reviewed papers presented at the past three
editions of both the ICT-DM 1 and ISCRAM 2 con-
ferences. Both conferences attract research on the
intersection of crisis and disaster management with in-
formation technology. In the remainder of this section
we discuss a selection of those papers in relation to
the topics in this paper.

1International Conference on Information and Communication
Technologies for Disaster Management

2Information Systems for Crisis Response and Management



A basic premise underlying the idea of emergency
software development, is that during disasters, tem-
porary organizations and ways of working are estab-
lished. This idea is supported by studies such as [2]
that studied the use of artefacts by temporary police
“staff” organization to create a common operational
picture. Although the main topic of this study is
unrelated, it helps to understand the context of ad-
hoc information sharing in temporary organizations.
Even more directly relevant is a study that looks at the
role of both human and technical infrastructure during
emergency response[11]. In this study that features
interviews with emergency responders, the implicit
“development” of customized makeshift information
systems by repurposing existing off-the-shelf tools,
that leads us to consider a structured approach, is
reported as part of emergency response work.

Additionally, studies on crowdtasking such as [1]
and [9] are helpful in identifying the types of tasks
that occur during disasters that could be supported by
temporary information systems. Similarly, papers that
showcase the designs of existing software for disaster
management can help to identify reusable components,
or building blocks. A good example of this is the
CBRN command information system in [4].

The last paper to explicitly mention is [3] that
compares the development of emergency plans to
software development. This paper highlighs the sim-
ilarity between emergency plans and software as an
opportunity to apply software engineering principles
to emergency plan development. The paper mentions
a “plan execution system” that executes formalized
emergency plans. The work is still in an early stage,
so there are not enough results yet to draw definitive
conclusions. It appears however that the combination
of formalized plans with a robust execution system
could be viewed as a way of creating emergency
information systems, and thus as a form of emergency
software development.

VI. CONCLUSION

When disasters disrupt existing systems, temporary
solutions have to be created to manage information
while the situation is being resolved. Without ded-
icated software development tools for the creating
of temporary information systems these information
systems are commonly created by combining generic
software with pen and paper solutions. In this paper
we position the rapid creation of such temporary
information systems as a specific type of software
development, Emergency software development, that
has its own design considerations and priorities. We
have discussed Task-Oriented Programming with the
iTask framework as one potential starting point to
facilitate this type of software development, but have
also identified a set of challenges that need further
investigation.

REFERENCES

[1] Daniel Auferbauer et al. “Crowdtasking: Field
Study on a Crowdsourcing Alternative”. In: IS-
CRAM 2016 Conference Proceedings – 13th In-
ternational Conference on Information Systems
for Crisis Response and Management. Ed. by
A. Tapia et al. 2016.

[2] Erik A.M. Borglund. “The Role of Artefacts in
Creating a Common Operational Picture During
Large Crises”. In: Proceedings of the 14th In-
ternational Conference on Information Systems
for Crisis Response And Management. Ed. by
Tina Comes et al. 2017, pp. 191–203.

[3] José H. Canós and Diego Piedrahita. “Emer-
gency Plans are Software, too”. In: ed. by Tina
Comes et al. 2017, pp. 374–379.

[4] B. Jandl-Scherf et al. “Software engineering in
the light of evolving standards in CBRN dis-
aster management”. In: 2016 3rd International
Conference on Information and Communication
Technologies for Disaster Management (ICT-
DM). Dec. 2016, pp. 1–8. DOI: 10.1109/ICT-
DM.2016.7857217.

[5] J.M. Jansen et al. “Web based dynamic work-
flow systems for C2 of military operations”.
In: 15th ICCRTS ‘The Evolution of C2’. 2010,
pp. 1–19. URL: http://www.dodccrp.org/events/
15th iccrts 2010/papers/094.pdf.

[6] Bas Lijnse. Incidone Projectbrochure. http : / /
www. cs . ru . nl / ∼baslijns / incidone / Incidone -
projectbrochure.pdf. 2014.

[7] Bas Lijnse. “TOP to the Rescue – Task-
Oriented Programming for Incident Response
Applications”. ISBN 978-90-820259-0-3. PhD
thesis. Institute for Computing and Information
Sciences, Radboud University Nijmegen, The
Netherlands, 2013.

[8] B. Lijnse et al. “Capturing the Netherlands
Coast Guard’s SAR Workflow with iTasks”. In:
Proceedings of the 8th International ISCRAM
Conference - Lisbon, Portugal, May 2011. Lis-
bon: National Civil Engineering Laboratory,
2011, pp. 1–10. URL: http : / /www.iscramlive.
org/ISCRAM2011/proceedings/papers/139.pdf.

[9] M. Middelhoff et al. “Crowdsourcing and
crowdtasking in crisis management: Lessons
learned from a field experiment simulating a
flooding in the city of the Hague”. In: 2016
3rd International Conference on Information
and Communication Technologies for Disaster
Management (ICT-DM). Dec. 2016, pp. 1–8.
DOI: 10.1109/ICT-DM.2016.7857212.

[10] M. J. Plasmeijer, P. M. Achten, and P. W. M.
Koopman. “iTasks: executable specifications of



interactive work flow systems for the web”.
In: Proceedings of the 12th international con-
ference on functional programming, ICFP’07.
Freiburg, Germany: ACM Press, Oct. 2007,
pp. 141–152. ISBN: 978-1-59593-815-2.

[11] John J. Robinson, Jim Maddock, and Kate
Starbird. “Examining the Role of Human and
Technical Infrastructure during Emergency Re-
sponse”. In: ISCRAM 2015 Conference Pro-
ceedings – 12th International Conference on
Information Systems for Crisis Response and
Management. Ed. by L. Palen et al. 2015.

[12] Jurriën Stutterheim, Rinus Plasmeijer, and Peter
Achten. “Static and Dynamic Visualisations of
Monadic Programs”. English. In: Implementa-
tion and Application of Functional Languages.
ACM, 2016. ISBN: 978-1-4503-4273-5. DOI: 10.
1145/2897336.2897337. URL: http://dx.doi.org/
10.1145/2897336.2897337.

[13] Jurriën Stutterheim, Rinus Plasmeijer, and Peter
Achten. “Tonic: An Infrastructure to Graphi-
cally Represent the Definition and Behaviour of
Tasks”. English. In: Trends in Functional Pro-
gramming. Ed. by Jurriaan Hage and Jay Mc-
Carthy. Vol. 8843. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2014,
pp. 122–141. ISBN: 978-3-319-14674-4. DOI:
10.1007/978- 3- 319- 14675- 1 8. URL: http://
dx.doi.org/10.1007/978-3-319-14675-1%5C 8.


